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Abstract 

Classical Yang-Mills-Scalar field equations on Minkowski space with gauge group SU(2) are 
determined. Solutions invariant up to a gauge transformation under a four-dimensional subgroup 
of the conformal group are determined for the case of a scalar matter triplet field. © 1999 Elsevier 
Science B.V. All rights reserved. 
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1. Introduction 

Classical Yang-Mil ls  equations have generated considerable interest over the years both 

from a mathematical point of  view, since in their most general form, they represent a 

system of  nonlinear partial differential equations, and in the application of  their solutions to 

physical  problems such as those that arise in physics applications. This has been especially 

apparent in the area of  particle physics, where the classical regime serves as a background 

for the quantized versions of  a theory. One can consider solving these field equations tbr 

solutions on their own with no external couplings to matter fields, such as scalar or spinor 

fields, as done in [1]. There has been considerable interest in these equations coupled to a 

matter triplet and doublet as well as spinor fields [2-5]. A complete solution of  this task 

is likely not possible. However, one can impose symmetry conditions on the problem. For 

example, one may consider invariance of  the solutions under four-dimensional subgroups 
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of the conformal group C (3, 1) of Minkowski space [6,7]. Some work along these lines for 

spinor fields has been done for some subgroups of C(3, 1) in [8]. The maximal symmetry 
group of the Yang-Mills system is the conformal group. 

Here, we consider the problem of obtaining the Yang-Mills equations on Minkowski 
space, or its conformal compactification. The field equations for a system of S U  (2) gauge 

fields are formulated such that there is a coupling to a scalar triplet in a pseudo-Riemannian 
space. Four successive subgroups of C (3, 1) will be considered. The analysis of the system 

has been carried out with respect to the following four subgroups of C(3, 1), namely, 

S 0 ( 2 ,  1) × S O ( l ,  1), SO(3) x S O ( l ,  1), S 0 ( 2 ,  1) × SO(2) and SO(3) × SO(2). One 
can obtain the field equations for the gauge field and, introducing a representation for the 

scalar field on the right hand side, one obtains the coupled Yang-Mills matter system. There 
is, in addition, a scalar field equation which determines the dynamics of the scalar field with 

self-coupling. It will be shown that there is enough simplicity at the subgroup level to allow 
one to obtain solutions for the scalar field. In fact, it is shown that the only solution for the 

scalar field is the zero solution for each of these subgroups, unless as in some cases one of 
the components of the gauge potential is taken to be zero. In these cases there could be a 

nonzero solution to the system, but with the gauge field decoupled from the matter field. 

2. Mathematical formulation 

Let .M be a pseudo-Riemannian space, {/u} a basis of vector fields on .M and {0 u } the 
dual basis. Suppose A4 has the metric 

g = ½guv(O u ® O  v + O  v ® O ~ ) .  

Let H be the gauge group, h its Lie algebra. The gauge potential is defined by a set of 

h-valued one-forms {w~} on some open covering {U~} of A/l, and the gauge fields are the 
components of the corresponding curvature two-form. We will write 

o2 = wlz dx  u , wt~ = w~ta • i ,  

where {tc~ } is a basis of the Lie algebra i .  Denote by ~ ,  the triplet of scalar fields in the adjoint 

representation of SU(2), and we shall take as a basis for su(2) the set {ta = aa /2 i ,  a = 

1, 2, 3}, where era are the standard Pauli matrices. In terms of its components, q~ will read 

= qba ta. 

The field equations on Minkowski space are given by 

*D*Deo = [alp, D ~ ] ,  * D * D ~  = )~lq~12q~, I~12 = dl)a~a, (1) 

where D stands for the exterior covariant derivative 

D = d + [¢o, .], (2) 

where the gauge coupling constant has been scaled to unity. The star operator will be defined 
with respect to the metric of the relevant subspace. 
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The field intensity corresponding to o) is the two-form 

F = Do) = do) + 1 [o), w], (3) 

which effectively appears on the left-hand side of  (1). Recall the definition of  the invariance 

up to gauge transformation. Let G be a Lie transformation group, with Lie algebra ~, acting 

on the manifold 34,  

f : G × 34  ---> 34,  f ( g ,  x )  = fg(x) .  

Denoting by fg*o)~ and f ~ * ~ ,  the pull backs of  wu and 4~u under f~ on the open set U~, 

we shall say that these potentials and fields are invariant under G if and only if 

fgW~ = A dpu(g, x ) - l w ~  + p~l (g, x )  dpc~(g, x) ,  

and 

f~*~ = D[p~ -~ (g, x)]¢,~, 

for all g E G, where D is a representation of  the gauge group on a vector space V, 

D : H --, G L ( V ) .  The matter fields transforming according to that representation are 

defined as sets of  V-valued fields ~u on Uu related by ~ = D ( k ~ ) ~ u  on U~ M U~. Here, 

p : G × Uu ---> H defines a gauge transformation. 

In this paper, we use invariant fields with invariance discussed in [3], on open sets U 

such that U = V × G/Go ,  where V is a one-dimensional contractible manifold called the 

transverse manifold, and the isotropy group Go is the same for every t E V. The invariant 

gauge potentials are of  the form, 

co = # + W o a - I  dcr, 

where W : V ---> Hom(~ ,  [~) is the Wang map satisfying the following conditions 

W(~) = Z,(~), 

for all ~ e go and 

W ( A  dg - l  q) ---- A d).(g) -1 (W(r/)), 

for all ~ ~ ~, g ~ Go. In these relations, go denotes the Lie algebra of  Go and # is a one- 

form on V which takes values in the Lie algebra of  the centralizer of  C z of) ,(Go) in H. For 

the case at hand, the manifold .M is Minkowski space M or its conformal compactification 

hT/. The invariant gauge potentials will not be developed here, one should consult [3]. The 

potentials from there will simply be put into (3) to obtain the field intensity. 

3. Invariant fields and Yang-Mills-Scalar equations 

Let us consider the four subgroups of  C(3, 1) namely, S 0 ( 2 ,  1) × S O ( l ,  1), S 0 ( 3 )  × 
S O ( l ,  1), S 0 ( 2 ,  l) × S 0 ( 2 )  and S 0 ( 3 )  × S 0 ( 2 )  in turn. Let us begin by describing the 
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action of these subgroups as well as the associated metric and gauge field for the subgroups. 
The gauge field will be determined by the structure of the subgroup and its corresponding 
metric, as pointed out in [3]. The first case, which will be the more complicated subgroup, 

namely, SO(2, 1) × SO(I ,  1), will be considered in more detail first as an example. The 
other subgroups of interest will be treated briefly, and only results will be presented. 

1. Let us first consider the case of the subgroup SO(2, 1) × S O ( I ,  1). The action of 
SO(2, 1) on Minkowski space is induced from its action on E6. A system of coordinates 

0~, ~, ~, t) is used which is defined by 

x ° = e X c o s h ~ c o s h ~ ,  x ! =eXsinhgt ,  x 2 = e X c o s h ~ s i n h ~ ,  x 3 = e X t .  

The factor S 0 ( 2 ,  1) acts on the subspace (012) and S O ( I ,  1) on the subspace (4, 5) of 
~6. The action of S O ( l ,  1) on (04, 05) 7" is for example, rl '4 = 04 cosh Z + O 5 sinh )~, and 

0 '5 = r/4 sinh X + 05 cosh 3~. Then under the action of gx E S O (1, 1), 04 + 05 is transformed 

into e•(04 4- 05), so the action of gx on Minkowski space M consists of multiplying every 

vector x 6 M by e -z .  One can write the action of S 0 ( 2 ,  1) x S O ( I ,  1) as a global action 
of ~ × S 0 ( 2 ,  1) on M with (gx, g)x  = eZgx for all X ~ ~, g E S 0 ( 2 ,  1). 

The invariant gauge potential for this subgroup is given by 

09 = y d~ti  + y cosh 7t d~t2 + (u dX + f dt + sinh ~ d~)t3. (4) 

From w, one can calculate do~, 

d~o = y'  dt A d~Ptl + (y' cosh ~ dt A d~ + y sinh ap d~  A d~)t2 

+ (u '  dt A dX + cosh ~ d~  A d~)t3, 

and the bracket is given by 

l[co, ~o] = (uy cosh ~p d~ A d L +  f y  cosh ~ d~ A d)~ + f y  cosh ~r d~ A dt)t! 

- ( u y d ~  A dX + y f  d~p A dt + y sinh ~ d ~  A d~)t2 

+y2 cosh ~ d ~  A d~t3 

The gauge field F is calculated from Eq. (3), 

F = (y' dt A d ~  + y f  cosh ap d~ A dt - uy cosh ~ dX A d~)tl 

+ ( y  cosh ~ dt A d~ + uy d)~ m dap - y f  d~  A dt)t2 

- ( u '  dX m dt + cosh 7t d~ m d ~  + y2 cosh ~ d~ m d~)t3. (5) 

In terms of these variables, the metric can be written in the form, 

0 --e 2x cosh 2 ~ 0 0 
gij ~ 0 0 --e 2X 0 

--te 2• 0 0 --e 2x 

which has the determinant g = det gij = -eSX cosh 2 !/r. 
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The dual of  F can now be calculated with respect to gij tO give, 

*F = [y '( t  2 - 1)cosh~p d£ A d~ - y ' t  cosh ~ d ~  A dt + y f ( t  2 - 1) d)~ A d ~  

- y f t  d ~  A dt + u y d g t  A dt + uy td~p A d£]tl + [--y ' ( t  2 -  1)d£ A d~p 

+ y ' t  d ~  A dt - uy  cosh ap dt A d~ + uy t  cosh 7t d~ A d£ 

+ y f ( t  2 - 1) cosh ~ d£ A d~ - y f t c o s h  lp d~ A dt]t2 

+ [ u ' c o s h  ~p d~ A d ~  - (y2 + 1)d)~ A dt]t3. 

Differentiating this once more with respect to D given in (2), and writing the field equation 

a s  

D * F  =* J, (6) 

one will produce a system of equations which are generated from the coefficients of the ti. 

From the coefficient of  tl, the coefficients of  the forms dt A d)~ A d~ and dt A d£ A d ~  

give the pair of  equations, 

(y ' ( t  2 - 1))' + ( f2  + yS + 1)y - ( f t  - u )2y  

and 

y - l ( ( y 2  f ( t 2  _ 1)) - uty2)  '. 

From t2, one has 

- ( ( y ' ( t  2 - 1))' + 2 u y f t  - y f 2 ( t 2  - 1) - u2y + y (y2  + 1)) 

and 

y - I  (y2 f (t2 -- 1) -- uty2)  ' cosh 

and from t3, one obtains the pair 

(u" + 2 y 2 ( f t  - u))  cosh 

and 

- 2 y 2 ( f  (t 2 - l) - tu)  cosh ~p. 

All the other coefficients vanish. These equations have to be matched with the corresponding 

ti and three-forms which appear in the matter current on the right-hand side of  the field 

equations. For example, if one takes the current J to be identically zero, so there is no 

coupling to the matter current, one would set the six equations above to zero, and try to 
obtain solutions of  the resulting system. By calculating the matter current, we can then 

match the corresponding coefficients of  the forms to obtain the full set of  equations coupled 

to the scalar field. 
If  one takes the form for q~ given above, writing dpat, for notational convenience and 

takes the ~ba to be functions of  only the t-variable in the same way that the u, y and f 

functions are, the required bracket can be written in the following form 
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[4~, Dq~] = ((~b2~b; - ~b3~b;) - fq~l~b3) d t +  (~b 2 + q~2)y d O  

-(4~1~b3 sinh ap + Yq~lq~2 cosh ~ )  d~ - u4~l~b3 d).)ti 

-k-((~b3¢btl -~bl~b; - f~b2q~3) dt + ((~b 2 + ~b2)y cosh ~p - ~b2q~ 3 sinh ap) d~ 

--u~bz~b 3 d). - y~bl~ 2 dgt)t2 + (~bl~b~ - ~b2~I1 -'F f(~b 2 + 4 f l ) )d t  

+(~b 2 +~b2)u d)~ + ((~b~ +~b 2) sinh ~ -y~b2q~3 cosh ap) d~ - y~bl q53 d~ ) t3 ,  

where  the componen t s  of  • have been writ ten in the fo rm 4~i for  notat ional  convenience.  

Taking the dual o f  this with respect  to the metr ic  and collect ing the coefficients o f  the indi- 
vidual  three forms  yield the fol lowing sys tem of  twelve  equations,  four  f rom the coefficients 

o f  each ti, as fol lows,  

(y ' ( t  2 - 1))'  + ( f 2  + y2 + 1)y -- ( f t  -- u)2y  = --y(c~ 2 + q~32)e 2z cosh ~ ,  (7) 

y -1  ( ( y Z f ( t 2  _ 1) - uty2)  ' = -eZX~bl (q~3 tanh ~p + y~2) ,  (8) 

((~2q~ - ~b3~b~ - fq~l~b3)(t 2 - 1) + utfbl(o3)e 2~ cosh ~ = 0 (9) 

((q~2~3 - ~b3~b; - f~ l~b3) t  + u~bl~b3)e 2z cosh ~r = O, (10) 

- - ( ( y ' ( t  2 -- 1)) '  + 2 u y f t  -- y f 2 ( t 2  -- 1) -- uZy + y ( y2  + 1)) 

= e2X ((q~ 2 + ~b2)y - ~b2~b 3 tanh 7z), (11) 

( y 2 f ( t 2  - 1) - uty2)  ' = -y2~blq~2e2Z, (12) 

e 2z cosh ~((~b3~bll - 4~1~b~ + f~b2q~3)(t 2 - 1) + utq~2~b3) = 0, (13) 

e 2x cosh gr ((~b3~bll - ~blq~ + f~b2q~3)t + uq~2q~3) = 0, (14) 

(u" + 2 y 2 ( f t  -- u))  cosh ~r = --(t(4~l~b; - ~b2~b'j + f(~b 2 + 4~2)) 

-u(~b  2 + ~b2))e 2z cosh ~r, (15) 

- 2 y 2 ( f ( t  2 - 1) - ut)  cosh 7I = ((~bl~b'2 - ~b2q~'j + f @ 2  + 4~22))(t 2 - 1) 

-u t (~b  2 + cb2))e 2x cosh Or, (16) 

(~b 2 + ~b 2) sinh gr - y~b2~b3 cosh ~ = 0, (17) 

e 2~ cosh Oy~bl~b3 = 0. (18) 

The  dynamics  of  the scalar field is de te rmined  by  the equat ion 

D*DqO = )~lq~12~ *1, (19) 

and one obtains f rom this three addit ional equat ions for  the mat ter  fields, 

e 2~ cosh ~p([(4/1 - f~b2)(/2 - 1) - ut(p2]' + u[- (q~;  + fdpl ) t  + U~bl] 

+f[(~b~ + f~b~)(t 2 - 1) + utdPl ] - q~l ta nh2 7 t + Y24r2) = L ~  Iq~12¢bl, (20) 

e 2~ cosh 7t([(~b~ + f~bl)( t  2 - 1) + utdpl]' - u[(q~¢l - fdpz)t  + u~2] 

+f[(~btl + f~b2)(t 2 - 1) - utdP2] + (q~2 - y~b3 tanh Or) + yZ~b2) = Let 114512~b2, 

(21) 

e 2~ cosh ~((~b~(t 2 - 1))' q- yq~2 tanh ~p) = )~cq I ~  124~3, (22) 
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Thefac to r sa i ,where i  ---- 1 . . . . .  4 tha tappearon ther igh tof themat te requa t ionsdependson  

the coordinates and comes from the * 1 operation for each of the subgroups considered here. 

2. The action of S O (2, 1) x S O (2) in •6 has the factor S O (2, 1) acting on the subspace 

(345) and S O (2) on the subspace (12). It is simpler to work in the conformally compactified 
space, the solutions on Minkowski space are then obtained by pull-back. 

For this subgroup, the invariant gauge potential is given by 

o) ---- y dT'tl + y cosh %0 d~t2 + (u d,k + f dt + sinh 7' d~)t3. (23) 

Using Eq. (3), one obtains the following expression for F, 

F = [y' dt/x d%0 - uy cosh 7' d)~/x d~ - y f  cosh 7' d t /x  ds~]tl 

+ [ y '  cosh 7' d t /x  d~ + y f  dt /x d%0 + uy dZ /x dT']t2 

+ [ u '  d t /x  d), + (y2 + 1)cosh %0 dT' /x  d~]t3. (24) 

The matter current can be written in the following form, 

[4~, O4~] = ((4'24';  - 4'34'; - f4 '14 '3 )  dt - 4'1 (4'3 sinh 7' + Y4'2 cosh 7') d~ 

+y(4'~ + 4,2)d%0 - u4,14,3 d l ) t ,  + ((4'34,', - 4,14,~ - f4,24,3)dt 

--U4,24'3 d l  -- Y4'14'2 dT' + ((4'~ + 4'2)y cosh %0 - %02%03 sinh 7') dse)t, 

- 4'-,4'', + + 4'2))dt  + + 

-Y4'14'3 d%0 + (4'~ + 4'2) sinh 7' cosh ~p d~)t3. 

To substitute this into the first set of  field equations, one can use the form (6), and take 
duals with respect to the metric g = (1, - 1, - cos 2 t, - cos 2 t cosh 2 7'). This leads to the 

following system of equations, which are summarized below, 

(4,24,; - -  Oh34,; - -  f4,14,3) COS 2 t co sh  %0 ---- 0 (25)  

( f ' y  + 2y ' f )  : - (4 '3  tanh 7' + Y4'2)4'1, (26) 

u4'14)3 cos2 t cosh %0 = 0 (27) 

(y,, + u2y _ y f2  + y(y2 + 1) cos -2 t) cosh 7' : -Y(4,2 + 4'3) cosh %0, (28) 

(4'34''1 - 4'14'~ - f4'24,3) cos 2 t cosh %0 = 0, (29) 

u4'24'3 COS 2 t co sh  7'  = 0, (30)  

( f ' y  + 2y' f )  = Y4'14'2, (31) 

_(y,, + u2y _ f 2 y  + y(y2 + 1) cos -2 t) = ((4'~ + 4'3)Y - 4'24'3 tanh 7'), (32) 
2 ((u'  cos 2 t ) '  + 2uy 2) cosh %0 = - u ( 4 '  2 + 4'2) cos- t cosh 7', (33) 

2 f y  2 cosh 7' ---- -(4)14,' - 4,24,'1 + f (4 '2  + 4'22)), (34) 2 

Y4'14'3 cosh 7' : 0, (35) 

(4'~ + 4,22) sinh %0 - y4,24,3 cosh 7' = 0, (36) 

((4,'1 - -  f4 ,2 )  COS2 t ) '  - -  f ( 4 ' ~  + f 4 ' 1 )  COS2 t 3r- U2q}l COS 2 t -Jr- 4'1 

- y 2 4 '  2 = ,kc;214,124,1, (37"1 
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( ( ~  --  f t ~ l )  cos 2 t) t cosh ~O + f (~b~l -- f~b2) cos  2 t cosh ~ d- u2~b2 cos 2 t cosh l~ 

- y  sinh ~ b  3 --]- (~b2 --1- y2~b2) cosh  ~ = )vo'2[tib 12~2, (38) 

((~b~ cos 2 t ) ' )  cosh ~ - y~b2 sinh ~ + 2y2tb3 cosh ~O = )vtr2l~ 12~b3 . (39) 

3. For  the subgroup  S O ( 3 )  x S O ( I ,  1), the subgroup  S O ( 3 )  acts on the subspace  (123) 

and S O (1, 1) on the subspace  (4, 5) of  •6. Then  S O (3) m a y  be cons ide red  as the subgroup 

of  the Lorentz  g roup  act ing on the subspace  (1, 2, 3). The only gener ic  s t ra tum is the orbit  

of  the subset  V def ined by  x 1 = 1, x2 = x 3 = 0, which  wil l  be taken as a t ransverse  section. 

Wi th  respect  to the coordina te  sys tem for this subgroup,  x ° = eZt, x I __ e z cos ~ cos 7t, 

x 2 = e z sin ap, x 3 = e z sin ~ cos  ~0, the invariant  gauge  potent ia l  is given by  

w = (u d~. + f d t  + sin ~ d~) t l  - y d~kt2 + y cos  ~ d~t3, (40) 

and the gauge  field is, 

F - - - ( u ' d t A  d X - ( y Z - 1 ) c o s ~ d ~ m  d~)t l  

- ( y '  dt  A dap + y f  cos ~p dt  m d~ + y cos ~ dL m d~)t2 

+ ( y ' c o s  ~ dt  m d~ - y f d t  A d~p - u y d X  m d ~ ) t 3 .  (41) 

F r o m  Eq. (6) for  the gauge  field and Eq. (19) for  the mat ter  field, by  matching  coefficients 

of  ti on both  sides of  these and then the coeff icients  of  the fo rms  on both sides,  one obtains  

the fo l lowing  sys tem of  equat ions,  

--(u t~ + 2uy  2 -- 2 t f y  2) cos 

-~ --(~2~b~ --  ~b3~b~ -~ ( f  - u)(~b22 + ~b2))e 2~ cos  ~t, (42) 

2 y 2 ( f ( t  2 - 1) - ut)  cos 7t 

= - ( ~ b 2 ~  - (b3(ot2 + ( f  - u t ) (O 2 + ~b2))e 2~ cos  7t, (43) 

yq~l~b2e 2~ cos  ~t = O, (44) 

(~b 2 -+- ~ ) e  2)~ tan ~p = 0, (45) 

((~b3q~'l --  q~lq~ --  f(bl(b2)t + Uq~lt]~2)e 2z cos ~ = 0, (46) 

((q~3~b' 1 - q~l~b~ - f~bl4~2)(t 2 - 1) + utgplgP2)e 2z cos ap = 0, (47) 

( (y ' ( t  2 -  1 ) ) ' +  2 u y t f -  u 2 y -  y f 2 ( t 2 -  1 ) -  y ( y 2 _  1) )cos  

= y(tb 2 + ~32)e 2z cos 7*, (48) 

y - l  ( y 2 f ( t 2  _ 1) - uy2t)  ' = e2Z~b2(~l tan ap + y~b3), (49) 

( (y ' ( t  2 - 1)) '  + ( t f  - u )uy  - f ( f ( t  2 - 1) - u t ) y  -- (y2 _ 1)y) 

= e2~.(y(q~2 _+_ ~2) _ ~btq~3 tan ~ )  (50) 

- ( f y 2 ( t 2  - 1) - uy2 t ) ' y  -~ cos ~t ----- ytb2q~3e 2z cos  ~ ,  (51) 

e 2z cos ~fl((~blq~ --  ~b2~b' 1 - fq~lq~3)(t 2 - 1) + u/~bl~b3) = 0, (52) 

(-(~b~ (t 2 - 1)) '  + y(2y491 - 4~3 tan ~ ) ) e  2z cos ~ = )~tr3 I ~  124~1, (53) 
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( - ( (~b  2 - f ¢ 3 ) ( t  2 - 1)) '  cos lp --  (utah3)' cos ~ + u(-(~b~ + f¢2 ) t  + uq~2) cos 
..]_ t 

f((4~3 + f~b2)(t 2 1) - ut492) cos ~p + sin ~ tan ~Pq~2 + y2~b2 cos ~ ) e  2x 

- £0-31q~12¢2, (54) 

[-((~b~ + f~b2)(t 2 - 1)) '  + (utqb2)' -4- u((4~2 - f~b3)t + u~b3) 

+f( (~b~ - fq~3)(t 2 - 1) + ut(p3) - (Y¢I - q~3 tan ~ )  tan 7t + y2~b3]e2X cos ~p 

= ),.0" 3 I(i~ [2~b 3 . (55) 

4. Finally, the action o f  SO(3)  x SO(2)  has the factor SO(3 )  acting on the subspace  

(123) and SO(2)  acting on the subspace (05) of  N6. Again, the calculations are simpler 
in conformally compactified space and the solutions on Minkowski  space are obtained by 

pul l -back.  

The invariant gauge potentials and fields are given respectively by 

co = (u d£ + f dt  + sin ~p d~)t l  - y d~pt2 + y cos  7t dset3, (56) 

and F is given by the expression, 

F = ( u ' d t  A d~ - (y2 _ 1) cos ~p dO A d~)tj 

+ ( - y '  dt A dgr + uy cos gr dse A d£ + y f  cos gr dse A dt)t2 

+ ( y '  cos gr dt  A d~ + uy dgt A d£ + y f  dgr A dt)b.  (57) 

Here, we will just summarize the resulting field equations. Using (6) and (18), one obtains 
the sys tem,  

( (u '  cos 2 t ) '  - 2uy 2) cos ~ = u(q~22 + q~2) cos 2 t cos ~ ,  (58) 

2 2y 2 f  cos ~ = -(~b2~b~ - ~b3q~2 + f ( ¢ 2  + ~b3) ) cos-  t cos 7t, (59) 

Yq~lq~2 COS lp = 0, (60) 

(4~ 2 + ~b 2) tan ¢ = 0, (61) 

( y ,  _ Y___~_ (y2 _ 1) + (u 2 - -  f 2 ) y )  cos  ~ = - - y ( q ~  + 4)3) cos ~ ,  (62) 
cos 2 t 

y - I  ( y 2 f ) ,  = -(~bl  tan ~p + y~b3)4~2, (63) 

u~bj ~02 cos 2 t cos  ~ = O, (64) 

(~b3q~tl - q~l¢~ - f~l~b2) cos  2 t cos lp = O, (65) 

_(y , ,  Y (y2 _ 1) + (u 2 - f 2 ) y )  = (y(¢~ + ~2) _ q~1¢3 tan ~ ) ,  (66) 
co s - t 

_ y - 1  ( f y 2 ) ,  cos ~p = yq~2~b3 cos ~p, (67) 

uq~4~3 cos  2 t cos ~p = O, (68) 

(~bl~b~ - q~2~bll - fq~l~b3) cos 2 t cos  lp = O, (69) 

-(~bll cos 2 t)  ~ cos  ~ - y~b3 sin ~p = £0"41~12q~, (70) 

((~2 - f~b3) cos 2 t ) '  cos lp --  bt2~b2 COS 2 t COS lp q- f(~b~ -- fq~2) COS 2 t cos lp 

--q~2 sin ~ tan 7t -- y2q~s cos ~p = ~.0-41q~ [2q~2, (71) 
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((4)~ + f4)2) C0S2 t) t COS lp -- u24)3 COS 2 t COS ~ -- f(4)~ - f4)3) c0s2 cos  lp 

+Y4)l sin ~O + 4)3 sin ~ tan ~ + y24) 3 COS lp = ).0414124)3 • 

This completes the derivation of  the systems of  equations for the subgroups. 

(72) 

4. Analysis of equations for subgroups 

1. Consider first the subgroup S O (2, 1) x S O (1, 1), where the system of field equations 

are given by (7)-(22). Specific values of  the coordinates which might satisfy the system 

will not be treated as a solution here. One of  these equations is quite restrictive as to the 

type of  admissible solutions for the field variables, namely (18), 

Y4)l 4)3 = 0. 

Let us first assume that the function y is not identically the zero solution. To satisfy (18), 

let us first take 4)3 = 0. Then setting 4)3 = 0 in Eq. (22) gives the constraint Y4)2 = 0, so if 

y # 0, then we must have 4)2 = 0. Putting 4)2 = 4)3 = 0 in Eq. (17) implies that 4)1 = 0, 

and we are left with the solution 4~0 ---- (0, 0, 0) for the scalar field, and u, y and f are then 

determined from the remaining equations with zero on the right-hand side. 

Another way to satisfy Eq. (18) is to set 4)1 = 0. If  we put 4)t = 0 in Eq. (14), we obtain 

4)24)3(ft + u) = 0, 

if u + f t  # O. Since the case in which 4)3 = 0 has already been treated, this leaves us with 

examining the case 4)2 = 0. Putting 4)1 = 4)2 = 0 forces y4)2 = 0 from (7) and this implies 

that 4)3 = 0. Again, we are left with only the zero solution, 40. 

If  one wants to consider the possibility of  taking y = 0, to satisfy (18), then Eq. (11), 

forces 4)24)3 = 0, which implies that 4)2 = 0 or 4)3 = 0. The case in which y = 0 4)3 = 0 
can be treated, as follows. Setting y = 0 in (17) implies that 4)~ + 4)2 = 0, which in (16) 

gives 4)~/4)2 = 4)'1/4)1, which implies that 4)2 = C4)l, where C is a constant. Putting this in 

(17) gives 4)1 = 4)2 = 0. Now suppose that y = 0 and 4)2 = 0. Then Eq. (9) implies that 

( f ( t  2 - 1) - ut)4)14)3 = 0, and in Eq. (17) 4)~ = 0, so 4)1 = 0. Putting 4)1 = 4)2 = 0 in 
Eq. (21) implies that the following decoupled coexisting pair remain and can be integrated, 

u" = 0, (4)~(t 2 - 1))' = ~.tr114)3124)3 . 

2. Consider the case of  the subgroup S0(2 ,  1) x SO(2).  Three of  the equations in the 

set are quite restrictive with regard to the functions which appear in them. These Eqs. (27), 
(30) and (35) are summarized below, 

U4)I 4)3 COS2 t cosh ¢ = 0, u4)24)3 COS 2 t cosh lp = 0, Y4)14)3 cosh lp = 0. 

There are a number of  combinations which will satisfy these equations. Consider setting 
4)3 = 0, then Eq. (25) is automatically satisfied, Eq. (26) and Eq. (31) in the group reduce 
to 

( f ' y  + 2y' f )  = -Y4)14)2, ( f ' y  + 2y' f )  = Y4)14)2 
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which imply that either ¢1 or ¢2 is zero. Since Eq. (36) reduces to ~2 + 4~2 = 0, setting one 

of  these fields equal to zero fixes the other to be equal to zero. 

Without putting u or y equal to zero, one must have ~l = ~2 = 0 if~b3 :~ 0. The Eq. (28) 
reduces to 

v" + u2y - y f :  + y(y2 + 1) cos -2 t = -y~b 3, 

so (31) and (33) become, 

f ' y  + 2 y ' f  = O, 

(u' cos 2 t)' + 2uy = O. 

Eq. (38) gives 

yq~3 = 0, 

and (39) gives, 

((~b~ cos 2 t) ')  cosh $ + 2y2~3 cosh ~ = ~.o2[~312~3 . 

The equation above implies that 4~3 = 0 or y = 0. If  $3 = 0, we are left with the zero 

solution 40. However, there is the interesting possibility of  taking y = 0, and in this case 

one can satisfy all equations provided u and $3 satisfy the following pair, 

(/jr COS 2 f) ,  = 0, ( ( ~  COS 2 t ) ' )  cosh  ~ = ~.a2 ]~b312~b3. 

for which one can write solutions in terms of  integrals with respect to t. 

3. For the subgroup SO(3) × SO(l ,  l), the most restrictive equation is Eq. (44), 

Yq~l ~b2 = 0. 

Again, let's suppose first that y ~ 0. Suppose that q~l = 0 which in (53) gives y~b3 = 0, so 

~b3 = 0. Putting ~b3 ---- 0 in Eq. (45) implies 4~2 = 0, which means that we have simply the 

zero solution 40. Putting ~2 = 0 in the above equation also gives zero. In (45), this implies 

that ~b3 = 0. Putting ~b2 = ~3 = 0 in Eq. (55) gives y~bt = 0, which implies that ~j = 0 if 

y ¢ 0, hence again only 40. 

Let 's consider the possibility of  taking y --- 0 in the above equation. This forces ~l ~3 = 0, 

from (50), so either ~t = 0 or ~b3 = 0. For the case in which y = 0 and ~l = 0, (45) 
9 "9 / ! 

implies ~b; + ~b~ = 0 and in (43) gives ~e/~2 = q~3/~b3 , SO ¢3 = C~b2 and (45) implies that 

~be = tP3 = 0. Consider the case in which y = 0, ~b3 = 0. In Eq. (45) implies that ~2 = 0. 

This combination satisfies all the equations identically except the following two, from (42), 

and the first matter equation, (53), 

-(~btl (t 2 - 1 ) ) ' e  2• cos  ~ = )~r31412~1, 

but in which there is no coupling with the/j-field explicitly. These can be integrated with 

respect to t. 
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4. The  subgroup  S O ( 3 )  x S O ( 2 )  is t reated last. The mos t  restr ict ive equat ions  wi l l  be  

those  given by  (60), (64) and (68) 

y~bl~2 ~-- 0, Uq~l~2 ----- 0, U~l~3 = 0. 

Suppose  y ~ 0, then to satisfy this system,  let  us first put  ~b 2 ~--- 43 = 0. Putt ing this 

combina t ion  into Eq. (72) gives y~bl = 0, so 4~L = 0 a lso  and we are left  with q~0. Another  

way  of  sat isfying these three equat ions  s imul taneous ly  is to jus t  put  q~l = 0, which  in (70) 

impl ies  that ~b3 = 0 if  y ~ 0. Put t ing 4~t = ~b3 = 0 in Eq. (61) gives q~2 = 0. In fact, taking 

4~3 = 0 in above  equat ion and (61) forces ~b 2 ~- 0, which  both give in Eq. (72), 4>1 = 0 

when  y ~ 0. 

Put t ing y = 0 and u # 0 in (9) gives ~bl~b3 = 0. For  the case  y = 0, ~bl = 0, (62) impl ies  

that 4~ 2 + 4~ 2 = 0, (59) impl ies  that  ~b~/4~2 = 4~/4>3, and so, as in the previous  cases,  one 

has on ly  the 4 0  solution.  W h e n  4~3 = 0 in (59) or (61), one has ~b 2 = 0. Thus,  wi th  y = 0, 

the sys tem can be comple te ly  satisfied except  for  the pair  of  equations,  such that u and 4~1 

are decoupled ,  

(u t cos  2 t ) '  = 0, 

- (~b I cos 2 t ) '  cos ~ = )~o'4[~ 12~1. 

which  can be eas i ly  integrated.  
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